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AFIT/GOR/ENS/02-07 

Abstract 

The research contribution of this thesis is the first known integrated architecture 

and feature selection algorithm for Radial Basis Neural Networks (RBNN's). The 

objective is to apply the network iteratively to determine the final architecture and feature 

set used to evaluate a problem. Additionally, this thesis compares three different 

classification techniques, Discriminant Analysis (DA), Feed-Forward Neural Networks 

(FFN) and RBNN's against several hard to solve problems. These problems were used to 

evaluate general classifier performance as well as the performance of the feature 

selection techniques. 

This thesis describes the classification techniques as well as the measures used to 

evaluate them. It next develops a new clustering technique used to determine the 

network architecture and the saliency measure used to select features for RBNN's. Next, 

the thesis applies these techniques to three general problems, Block-C, the University of 

Wisconsin Breast Cancer Data (UWBCD) and a noise corrupted version of Fisher's Iris 

problem. Finally, the conclusions and recommendations for future research are provided. 
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AN INTEGRATED ARCHITECTURE AND FEATURE SELECTION 

ALGORITHM FOR RADIAL BASIS NEURAL NETWORKS 

1 Introduction 

1.1 General Discussion 

The science of classification deals with a general class of problems wherein real- 

world observations are used to distinguish between two or more classes of interest. One 

example of classification is a college admissions department attempting to distinguish 

individuals who will graduate from those who will not. Another example is the 

classification of certain cells as cancerous or benign. Military applications include 

automated classification of images as target or clutter. There are numerous approaches to 

classification, encompassing qualitative and quantitative techniques. The focus of this 

thesis is on quantitative techniques including discriminant analysis (DA) and artificial 

neural networks (ANN). 

Regardless of the approach used, there will likely be errors in determining the 

class in which an observation belongs. Associated with misclassification errors are costs 

or losses. Some costs are minimal, such as denying college admission to someone who 

would graduate. This will only hurt an institution if they do not admit and graduate 

enough students to make money. In other situations however, misclassifications can have 

very serious consequences. If cancerous cells are misdiagnosed as benign, lives could be 

lost. The goal of all classifying problems is to minimize misclassifications, particularly 
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those that are very costly. Therefore, it is important to understand the situations where 

classifiers will perform well, as well as the situations where they struggle. 

There are certain problems for which some classifiers perform poorly. Alsing [1], 

in evaluating competing classifiers, presented several challenges to a linear or quadratic 

discriminant classifier. Data that is not separable in a linear or quadratic fashion defeats 

linear and quadratic classifiers. Examples of such problems include XOR data, the Block 

C problem (Figure 1-1) and the Iron Cross problem (Figure 1-2.) These problems depart 

from multivariate normality into the realm of pattern recognition as it might be applied to 

image classification and human behavior. 

Class 1 Class 2 

Figure 1-1. Block C Problem 

Class 1 

Class 2 

Figure 1-2. Iron Cross 
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The dimensionality of the data can also pose problems for a classifier. G.V. 

Trunk [17] purports that prediction accuracy of a classifier will drop to 50% as the 

number of dimensions in the data increases for a finite data set. In his application, he 

adds real features to the exemplars, with the distance between the two classes for each 

successive feature approaching zero. Classification is accomplished using a simplified 

classifier, which assumes the distribution of the two classes, and does not estimate this 

information from the data. While these assumptions are not viable for the techniques that 

will be discussed in this thesis, it does suggest that the number of features has a 

detrimental impact on classification accuracy. This thesis will explore the relationship 

between dimensionality and classification accuracy for DA and ANNs. It will also 

measure the impact that feature selection, the removal of insignificant features, has on 

classifier performance. 

DA and ANNs are generally used for classification and pattern recognition 

problems [20]. These classifiers attempt to map the input vectors to vectors of ones and 

zeros (depending on the number of classes in the problem). In addition to classification 

problems, ANNs can be applied to nonlinear regression [20]. Radial basis neural 

networks (RBNN) can be employed in a generalized regression neural network (GRNN) 

framework. In this framework the networks fit a nonlinear function to the input data, 

providing a function as output instead of a classification vector or value [19]. A special 

case of nonlinear regression is time series analysis, where the features are the previous 

responses (in time) with some delay [9]. 

1.2 Problem Statement and Research Objectives 

This thesis will compare the efficacy of the aforementioned classifiers using 

several techniques explored in Alsing [1]. One measure used will be classification 

accuracy - an estimate of the Actual Error Rate (AER) calculated from applying the 
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classifier developed against an independent validation data set.   Receiver Operating 

Characteristic (ROC) curves will also be used to compare the impact of differing decision 

criteria on Type 1 and II errors. Lastly, a Multinomial Selection procedure will be used to 

rank the classifiers over the different problems. 

Hard-to-solve problems will be explored in relation to the classifiers. The 

problems evaluated will include general classification and feature selection problems. 

This thesis will explore the problems dimensionality poses to a general classification 

problem. It will also analyze different pattern recognition problems of varying 

complexity to challenge the classifiers. Finally, it will apply the classification techniques 

against breast cancer data from the University of Wisconsin [18] and Fisher's Iris 

Problem [4]. 

The goal of this research is two-fold. The main research objective is to develop 

an integrated architecture and feature selection algorithm for RBNN's. This feature 

selection algorithm will be compared with the feature selection techniques for the other 

classifiers. A secondary goal included in this effort is to evaluate the overall effect 

feature selection has on classification accuracy across the classifiers. 

Further, different classifiers will be evaluated against a set of challenging 

problems. The goal is to explore differences in classifier performance against a broad set 

of problems and to develop a methodology to determine the appropriateness of different 

classification techniques for these problems. This will aid in determining the best 

alternatives for different problem types. 
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2 Literature Review 

2.1 Overview 

This chapter reviews the literature regarding the classifiers under discussion and 

various evaluation criteria used for classifiers. The research is focused on the area of 

feature selection. For Discriminant Analysis (DA), there is a discussion of two 

approaches to feature selection: Stepwise DA and Discriminant Loadings (DL). The 

literature review regarding Feed Forward Neural Networks (FFNN) will cover network 

architecture, backpropagation and feature selection. For the last classifier, Radial Basis 

Function Neural Networks (RBNN), there is no developed feature selection algorithm; 

several proposed solutions will be explored in chapter 3. The literature review for RBNN 

will concentrate on network architectures, kernel functions and clustering algorithms. 

2.2 Discriminant Analysis (DA) 

DA classifies exemplars into groups by creating a hyperplane - either linear or 

hyperbaloid - to separate the feature space into two distinct areas (for the two-group 

problem). This decision line is based on the within-class mean vectors and the 

covariance structure of the features. If the two classes are linearly or quadratically 

separable, DA will perfectly differentiate between the two classes if the appropriate form 

is used. 

A key assumption for DA is that the independent variables must possess a 

multivariate normal distribution [6]. While the technique remains robust against small 

departures from normality, if the data severely departs from this assumption, 

classification accuracy can be greatly affected. Additionally, this can impact the 

statistical method of feature selection, Stepwise DA, discussed below. 
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The second assumption impacts the DA method used - Fisher's Approach or 

Quadratic Discrimination. To use Fisher's Approach, the within class covariance 

structure must be equal for the two groups being classified. This assumption can be 

tested using the following hypothesis test [3]. The null hypothesis states that the within 

class covariance matrices are from the same underlying distribution. Under the null 

hypothesis 

P{-2p\nWi<Z}=p{z2F<z] (2.1) 

where q = number of groups, p = number of variables, N = total sample size, n = N-q, 

Ng = number in group g,ng = Ng-\ and F the degrees of freedom for the test, and where, 

p = \- 
^-"' n       n 

f  -.„2 2pz+3p-l 
6(p + l)(q-l) 

(2.2) 

F=±{q-l)p{p + l) (2.4) 

If the test statistic, -2plnWj, is sufficiently large, we reject the null hypothesis and 

conclude the within class covariance structures are unequal. 

2.2.1 Fisher 's Approach. 

Under the assumption of a common covariance structure, Fisher's approach can 

be applied to solve the problem. Fisher sought to maximize the following equation 

(^-/VJ (2.5) 

This equation describes the squared distance between the discriminant scores of the two 

class means {bTßi) with respect to the variance o 

solution b to solve this nonlinear program is [6] 

class means {bTßi) with respect to the variance of the discriminant scores {bTIb) [3]. The 
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b = ^(p,-ßl) (2.6) 

For any practical problem, the true population parameters are unknown, and therefore, 

need to be approximated using the sample means and covariance as unbiased estimators 

of the true parameters. 

To classify a new exemplar, the linear combination is applied to the new data 

point. In this thesis, the prior probabilities of the two groups are assumed to be equal, as 

well as the "costs" of misclassification. In this problem, exemplars are classified 

according to which side they are of the midpoint of the centroids (mean vectors) in 

projected space which is 

M=7i+7~2 = \J^x_x2)
TS-l(x,+X2) (2.7) 

The decision rule (in projected space) becomes: If Ynew = b^XneH, > M, classify as Group 1 

- otherwise classify as group 2. This assumes the projection of the group one centroid is 

larger in the projected space than that of the second group. 

2.2.2 Quadratic Discriminant Functions 

The quadratic discrimination approach provides a greater ability to separate 

classes - particularly if the classes are not linearly separable. This approach is necessary 

if the covariance structure is different for the two classes, and allowing for these 

differences provides the greater flexibility. This approach is also easily extended to more 

than two classes. Each class generates its own quadratic discriminant score [6] 

dQl =-±\n\L\-±{x-ßi)
TY-'{x-ß)+\n{Pi) (2.8) 

where P, is the prior probability of the exemplar belong to class i. The decision rule is 

very simple; an exemplar is classified according to the largest discriminant score. This 

approach will produce results identical to Fisher's equation if the within-class covariance 

matrices are identical. Because of the flexibility, greater classification power provided by 
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this approach and the relaxation of the assumption of equal within-class covariance 

structures (although multivariate normality is now assumed), quadratic discriminant 

functions will be used for all applications discussed in this thesis. 

2.2.3 Feature Selection 

As discussed previously, two different approaches to feature selection will be 

explored, Stepwise DA and Discriminant Loadings. Both applications will be discussed 

in a backward selection paradigm - all the features will be included, and one feature will 

be removed at a time according to a selection criteria. 

Stepwise DA employs partial F-tests similar to stepwise regression. Without 

multivariate normality, the F statistics will not accurately describe the significance of the 

individual features. If the data is taken from a multivariate normal distribution, the 

following statistic is distributed as F(P-I:N-P -1) [8] 

f \ 

F = 
rN-p-\^r NXN2 

P-l    ){N(N-2)) 
A%-AV P-\ 

i + 
V      V N{N-2) 

(2.9) 

where N = total sample size,/? = number of variables, iV, = number in group i, and A , are 

the Mahalanobis distance between the respective group means, defined to be [6] 

A2/=G£/1-^2)
rZ-IG£/1-^2) (2.10) 

This test statistic compares the distance between the means with all p features, A Py with 

the Mahalanobis distance with one feature removed, A p.j. A feature is considered 

significant if F > Fa, the null hypothesis being that the feature is not significant. Under a 

backward selection routine all features are included in the original model. During each 

iteration, the F statistic is calculated for each feature, and the least significant feature is 
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removed (the feature with the smallest F value) [8]. This process continues until all the 

insignificant features are removed or until only the most significant feature remains. 

Discriminant Loadings provide an alternative to Stepwise DA, and do not require 

the assumption of multivariate normality; however, the technique does assume equal 

within-class covariance structures. Discriminant Loadings provide the correlation of a 

feature with the discriminant function. Loadings have the following form [3] 

DL = RD~2 b(bTCb)~2 (2.11) 

where C is the sample covariance ofZ, Z)~ is the matrix of the diagonal elements of C 

and R is the sample correlation of X. It is assumed that the least significant feature has 

the smallest loading in absolute value. Similarly, the most significant feature has the 

largest loading. As with Stepwise DA, Discriminant Loadings can be applied in an 

iterative manner. For each iteration, the loadings are calculated and the feature 

corresponding to the smallest loading is removed. 

Dillon and Goldstein [6] assert that Discriminant Loadings provide a clearer 

indication of which features are important. The loadings reflect common variance among 

the predictors, and are less subject to multicollinearity among the features. The partial F- 

vaiues used in Stepwise DA however, can be confounded by highly correlated features. 

For these reasons, this thesis will employ Discriminant Loadings to perform feature 

selection. 

2.3 Feed-Forward Neural Networks 

FFNN's (as well as the other Artificial Neural Networks (ANN)) employ a 

completely different approach to classification than DA. ANN's are loosely based on a 

biological concept. Neurodes are connected and information is passed between them. 

The key to using this structure for classification is the updating of the information being 
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passed. In FFNN's, this process is called learning, and its goal is to produce outputs that 

closely resemble the class membership [3]. Figure 2-1 illustrates a standard FFNN. 

There are generally three layers to the network: Input, Hidden and Output. The upper 

layers receive a weighted sum of the outputs of the previous layer's nodes. Inside the 

node, a threshold function is applied to this sum, restricting the function values to the 

interval [0,1] or [-1,1]. The most commonly used threshold function is the sigmoid 

function (see Figure 2-2). It restricts the network output to the interval [0,1], and most 

importantly is differentiable. This is critical for backpropagation to work. It has the 

following form 

fia) = 7 7 
(l + e-a) 

(2.12) 

With enough nodes in the hidden layer, FFNN are universal function approximators. A 

FFNN is an ANN where all the connections move from lower to higher levels. 

Output Layer 

Hidden Layer 

Input Layer 

Figure 2-1. FFNN with Bias and Single Output [3] 
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Figure 2-2. Sigmoid Function 

2.3.1 Backpropagation 

Backpropagation is the standard manner by which the weights are updated in a 

FFNN [11]. Typically, the goal of the network is to produce outputs that are very close 

to one for class one and zero for class two. The weights are adjusted during training to 

minimize the total squared error 

E = ±(t^-z^)2 
(2.13) 

where n is the number of exemplars, t(i) is the target and z(i) is the network output for the 

ih exemplar. The weights are initialized randomly, and then a gradient descent routine is 

used to iteratively update the weights. The weights are updated until the error converges, 

or until we have cycled through the data (an epoch) the maximum number of times. For 

each exemplar, the error is calculated. The weights are updated according to the gradient 

of the error with respect to the weights. First the upper weights, ui (see Figure 2-1), are 

updated, and then are used to update the lower weights, w7> The weight updates for the 

upper weights for the ih exemplar have the following form 
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«W^+^-zHzHl-^V} (2-14) 

where yP is the output of the kth hidden node for exemplar i and r\ is the learning rate 

(preferably around 0.01). The lower weights are updated in the following fashion 

»,,M=V)+4W-*WM-*%°V,(|-.>'.%M P-15) 
where xfl) is the/Ä feature of the ih exemplar. 

Apart from a strict gradient search routine, there are many techniques that are 

used to accelerate convergence [12]. These techniques include the Conjugate Gradient 

Method, which uses a second-order approximation of the gradient along which to move. 

Momentum modifies the gradient by adding a first-order term containing the previous 

weight update, and is used to smooth the direction of descent. Adaptive learning adjusts 

the learning rate around a minima, by shrinking the step size. This thesis will employ 

MATLAB®'s "traingdx" routine, with a momentum coefficient of 0.9, and adaptive 

learning rates of 1.05 and 0.7 for increasing and decreasing the learning rate respectively. 

2.3.2 Feature Selection 

There are two main forms of feature selection for FFNN, derivative-based and 

weight-based saliency [3]. Derivative based saliency techniques measure the change in 

unit output per unit change in each of the features. For FFNN's, this is generally 

approximated and not calculated in closed form. Weight-based saliency instead uses the 

lower layer of weights to determine feature significance. The saliency measure for 

feature i is 

^=IX/ (2-16) 
7=1 

where J is the number of hidden nodes. The smaller the saliency measure, the less 

significant the feature. 
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While both saliency measures provide a numerical scale for feature significance, 

neither measure provides a criteria for what is truly significant. Bauer et. al. [4] have 

proposed an objective criteria for determining significance, the Signal-to-Noise Ratio 

(SNR) Saliency Measure. In this technique, a noise feature is added to the data prior to 

training, taken from a Uniform(0,l) population for both classes. After training is 

accomplished, the weights for this feature should remain close to zero. The other 

feature's weight-based saliency measures are then compared to the noise variables 

saliency, and the SNR for feature i becomes 

SM?,=101og10^- (2.17) 
*s 

where tN is the saliency for the noise variable. Those features with a SNR less than zero 

are determined to be insignificant, and can be removed from the data set. Some care 

must be taken in removing features, since the initial weights can greatly impact this 

measure. Training several networks with different random weights can provide more 

confidence in the significance of different features. 

2.4 Radial Basis Function Neural Networks (RBNN) 

RBNN differ from FFNN in several very fundamental ways. Both general 

network architecture and training differ between the two. RBNNs belong to the general 

class of probabilistic neural networks (PNN). Under the PNN paradigm, classification is 

performed by estimating a probability density function (PDF) for each class. A new 

exemplar is classified according to the class whose density function is more likely. 

Unlike FFNN's, PNN's do not require training. A training set is read in, and is used to 

generate the PDF's for each class [19]. 

Kernel density estimation is the process by which the PDF's are estimated. A 

kernel density function is any function K satisfying the following equation [15] 
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r K{x)t 
J— CO 

bc = l (2.18) 

Kernels are typically symmetric, though not necessarily. The Epanechnikov kernel is the 

most efficient kernel density function; the kernel minimizes the integrated square error of 

the estimator. It has the multivariate form 

Ke(x) 
1 

2c, 
■(d + 2)(l — xTx)     xTx < 1 

0 otherwise 
(2.19) 

where Cd is the volume of the J-dimensional unit sphere [15]. Figure 2-3 illustrates the 

univariate form of the Epanechnikov. 

J_________^ 

/                 0.2 

/                           0.1 

 L.T........................, Q_ 

-2 

Figure 2-3 Univariate Epanechnikov Kernel 

Although the Epanechnikov kernel is the most efficient method, the choice of 

kernel functions is relatively insignificant. Efficiency of every other kernel estimator is 

compared as a ratio to the Epanechnikov kernel. For example, the Gaussian kernel is 

approximately 95% efficient, and is the most widely used kernel estimator, particularly 

for PNN [19]. The Gaussian kernel has the multivariate form 

K(x) = 
1 -XTX 

Vw 
(2.20) 
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The PDF is the sum of the kernels, with each weighted by 1/N, keeping the resulting 

function a PDF (maintaining the property of equation 2.18) [15]. 

Under the PNN paradigm, each basis function output is weighted equally. 

RBNNs allow the weighting for each output to be different. For RBNN, the hidden layer 

is made up of kernel functions centered at each exemplar of the training set (in its 

simplest form). Each exemplar in whole is passed to each neurode, where the kernel 

function maps the «-dimensional input vector into the real numbers. This leads to the 

general network architecture seen in Figure 2-4. 

Inputs 
Hidden 
Layer 

Output 
Layer 

Figure 2-4. RBNN with Single Output 

In this thesis, the standard function in the hidden layer will be the Gaussian with 

the form: 

hi (x) = exp 
(x-ß)T(x-ß) 

2a:
2 

(2.21) 

Training is accomplished in a similar manner to backpropagation is used for FFNN [19]. 

As seen in Section 2.3.2, gradient search is used to find the minimum error. For RBNN, 
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the training algorithm is much simpler, with only one layer of weights to train. A single 

output network will use the following equation to update the weights 

w!(n + \) = wi(n) + ri{t-y)zi (2.22) 

where z, = h,(x), t is the target value, and w-, and y are as described in Figure 2.3. A 

single exemplar (x) is passed through all the hidden neurodes to obtain the output of the 

network, y. Each hidden weight is then updated using Equation 2.22. When all the 

training exemplars are processed, one epoch is complete. This process will continue until 

the error is small enough. 

The training for RBNN is guaranteed to converge to a global minimum if the 

classes are separable by hyperplanes, unlike FFNN where the training might get caught in 

a local minimum [11, 16]. Training for a RBNN is also considerably faster than for a 

FFNN. For networks of similar size, the difference in training time can be as large as 

three orders of magnitude [19]. 

Selecting the receptive fields (o;-) for each center is also necessary. If chosen too 

large, the center will have too great an impact on the output of exemplars far from the 

center.   If chosen too small, the network will only activate for those exemplars located at 

the centers, leaving gaps in the classifier. One method which has produced favorable 

results consists of setting Gt equal to the distance between the ih center and its nearest 

neighbor [19]. The nearest neighbor approach will be used in this thesis to estimate the 

receptive fields used for the radial basis functions. 

2.4.1 Cluster Algorithms 

Even though training is much quicker for RBNN than FFNN, subsequent 

application of the network to new exemplars can take much longer. The size of the 

network in terms of the number of hidden nodes can be much larger for a RBNN than for 

an equivalent FFNN [11,16]. Clustering techniques can be used to represent multiple 
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hidden nodes with a single node, thus reducing the computational effort required for 

training which is proportional to number of training vectors [12]. 

One must be careful not to use clustering techniques indiscriminately. As the 

number of features increases, clustering techniques can erroneously identify cluster 

centers, clustering around features which are not useful for classification [19]. This 

indicates that feature selection can improve clustering accuracy, which will in turn 

improve classification accuracy. Three clustering algorithms will be discussed next: a 

simplified algorithm due to Wasserman, iT-Means and the Radial Basis Function Iterative 

Construction Algorithm (RICA). Supplemental flowcharts will be included for additional 

clarification. 

Wasserman [19] presents a simple clustering algorithm, in which nodes are 

pruned (removed from consideration as centers) and have no impact on the centers used 

when the network is trained. Each class is processed, with the centers produced in a 

single pass through the data. The first exemplar is chosen as a basis function center. 

Each subsequent exemplar is processed using Euclidean distance to determine the closest 

center. If this distance is smaller than a threshold distance, the exemplar is discarded. If, 

however, the distance is larger than the threshold, the exemplar becomes a new center. 

One problem with this algorithm is that different sequences will produce very different 

results. It also discards information about the density of the training data, since nodes are 

pruned, instead of impacting the location of the centers. 

iT-Means clustering is a self-organizing procedure. Unlike the simple clustering 

discussed above, it is iterative, stopping when the centers selected remain the same. It 

derives its name from the output of the algorithm. A number of clusters (K) is specified, 

and the algorithm returns the means of each cluster of data [2]. Each class will be 

clustered separately, with K not necessarily the same for each class. There are several 

ways to initiate the algorithm, but the most common is to assign K random exemplars as 
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initial centers [6]. Each successive exemplar is assigned to the nearest center. Once all 

the data is assigned to a cluster, the means of each cluster become the new centers. The 

data is processed in the following manner until the centers remain the same between 

iterations [12]. 

Without a priori knowledge of the number of clusters, the selection of K involves 

experimentation. One measure for accomplishing this task is the squared sum of the 

deviations of each exemplar from its cluster center. Candidate K values for are used, and 

that value of K which produces the smallest error is selected [12].   Certain values for K 

should be excluded. IfK is allowed to be equal to the number of exemplars, the error 

will be zero, and the algorithm will produce clusters equivalent to the training data. 

Hence, if Kis allowed to approach the number of exemplars, too many clusters will just 

contain one point. For this research, K is limited to one half the number of exemplars for 

a given problem. Figure 2-5 below illustrates the algorithm in flow-chart form. 

Randomly pick "k" exemplars for 
initial centers 

Cluster points by closest center 
(Euclidean distance) 

Calculate means for each cluster 

Yes No 

Output centers 

Figure 2-5. iT-Means Algorithm 
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While the preceding algorithms simply define the cluster means, RICA describes 

the distribution of each center individually described by the mean and covariance of the 

cluster. The end result of the procedure is [21] 

hl(x) = e 2 . (2.23) 

The key to the algorithm is determining the number of clusters and their partitioning. 

Wilson [21] proposes using Shapiro- Wilk test statistics to determine if the current 

partition is sufficiently distributed as a multivariate normal. A Shapiro-Wilk test statistic 

for the current partition of the data is compared to the test statistic of two partitions 

generated from the current one. Wilson employs the univariate form of the test statistic 

W = u'    ()/ (2.24) 
Ns 

where a-, are weighting coefficients developed by Shapiro and Wilk, available in tables 

[5] for n <50, X^ are the ordered data and s is the sample variance. For n > 50, Shapiro 

and Wilk provide the following approximations for the coefficients [14] 

a, =— for i*\,n (2.25) 

where 

'/-0.375' 
m, = O 

« +0.25 
,i = \,...n [10] (2.26) 

with 0 ' being the inverse cumulative distribution function of the standard normal 

distribution and 

C = V-2.722+ 4.083« (2.27) 

For di and a„, they propose a different approximation 
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an = -a, =      , =. (2.28) 

As the data tends toward a normal distribution, the test statistic tends toward 1.0; the test 

statistic will approach zero for data that is distinctly non-normal [5]. If the current 

partition has a larger test statistic than either of the sub-partitions created, it is kept. 

Otherwise, the two new partitions will be kept and analyzed in the same manner [21]. 

The partitioning of the data is accomplished by employing iT-Means with 

Mahalanobis distance used instead of Euclidean distance. Using Mahalanobis distance 

preserves the correlations present in the data [21]. If the data is standardized and the 

features are independent, the two distances will produce the same results, but this is not 

always the case. The original partitioning of the data is created using Euclidean distance, 

since there is no covariance structure for the two centers. Once the data is clustered, the 

sample means and covariances will be used in the next iteration. The iT-Means algorithm 

is then employed iteratively as described above. Because the algorithm requires a 

covariance matrix for each cluster, if any partition has fewer than/?+i data points (p 

being the number of features) the algorithm will stop. If the covariance matrix does exist, 

its inverse will not exist if some of the features are linearly independent. This is 

evidenced by eigenvalues of the covariance matrix being zero. This can be rectified by 

replacing these eigenvalues with a threshold value of 0.5. The modified covariance 

matrix becomes [21 ] 

C = VD*VT (2.29) 
=1= 

where D is the matrix with the modified eigenvalues along the diagonal and V is the 

matrix of eigenvectors of the sample covariance matrix, C. 
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While Wilson [21] uses the univariate form of the Shapiro- Wilk test statistic, it is 

not clear how the multivariate data is applied. Malkovich and Afifi [13] have proposed a 

multivariate generalization of the test statistic 

2 

HaJUU) 
7=1 w* = -      _ _ 

(Ym-Y)TA-iYm-Y) 

where 

(2.30) 

A = t(Yj-Y)T(Yj-Y) (2.31) 
7=1 

and Ym is the observation that has the maximum value over all the observations of 

(YJ-YJ'ä-^YJ-Y) (2.32) 

The üj are defined identically to those for the univariate test, and UQ) are the order 

statistics. The order statistics are defined by ordering the following statistics 

U,.=(Ym-Y)TA-iY,.-Y) (2.33) 

W* has the same interpretation as W, namely the closer to 1, the more normal the 

underlying population. Using W* instead of W'm Wilson's algorithm provides a more 

meaningful multivariate interpretation while being computationally simpler. Figure 2-6 

describes the algorithm with n denoting the number of exemplars and m the number of 

features. 
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No 

Retain Current 
Cluster 

No 

Assign Class as Current 
Cluster 

Calculate SW 

Cluster points by K-Means 
(Mahalanobis dist.) 

No 

Yes 

Calculate SW1 and SW2 
for two subclasses 

No Yes 

Yes 

Select next Cluster 
to Evaluate 

Discard Current Cluster 
— Retain Subclusters 

Return cluster means 
and covariances 

Figure 2-6. RICA Clustering Algorithm 
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2.4.2 General Regression Neural Network 

General Regression Neural Networks (GRNN) are a class of RBNN used 

predominantly for non-linear regression [19]. The hidden layer is identical in structure 

and setup to the standard RBNN with a Gaussian kernel centered around each exemplar 

in the training set. There is an additional layer, as well as an additional output from the 

hidden layer. The eventual output of this network is the weighted output (z) scaled by the 

unweighted output of the hidden layer (s). Figure 2-7 illustrates this architecture. 

Hidden 
Layer Outputs 

Normalized 
Ouput 

Figure 2-7. GRNN with Single Output 

The primary difference between GRNN and RBNN is the training of the hidden 

weights. There is no training for GRNN's [19]. Each (xi,y,) pair in the training set is 

folded into the network. The input vector, Xj, is the center of radial basis function, h„ and 

the output, y-„ is the hidden weight for that node. If the spread, <7„ is very small, the 

network will have no error against the training set, however, the network will not be 

applicable to new exemplars. The choices for <7, can be made in the same manner as the 

RBNN, using the nearest neighbor method. 
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2.5 Evaluation Techniques 

There are several common techniques used to evaluate the utility of a classifier. 

The most common is estimating the Actual Error Rate (AER). This estimate of true error 

is obtained by applying the classifier to an independent validation set. This is due to the 

fact that using the training set will tend to underestimate the error [3]. There are two 

components to error, namely False Positive (FP) and False Negative (FN). Positive 

corresponds to the target, Class 1 and negative relates to the clutter, Class 2. A 

Confusion Matrix displays this information graphically as depicted in Figure 2-8. 

• »—I 

XTt 
CO 

Ci 

G    c 

Truth 

TP FP 

FN TN 

Figure 2-8. Confusion Matrix [3] 

AER can be computed directly from a CM 

FP + FN 
AER = - (2.34) 

TP + FP + FN + TN 

Using the estimate of AER to compare two classifiers can produce misleading results, 

particularly if the prior probabilities are very different [1]. Figure 2-9 illustrates two 

different classifiers applied to a notional data set. Classifier 1 has the smaller AER (95% 

vs. 94%), and would be considered the best classifier based on this measure. However, 

everything is classified as Class 2, and nothing is detected. No classifier is required to 

produce this output, an individual can simply assign Class 2 membership to every 
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exemplar. Classifier 2 has only a much better probability of detection (80% vs 0%), 

defined to be 

TP 
PD =  (2.35) 

TP + FN 

where TP and FN are defined as in Figure 2-7. Classifier 2 also has an only slightly 

higher probability of false alarm (5% vs. 0%), defined as 

FP 
PFA=  (2-36) FA     TN + FP y       J 

With this information, Classifier 2 appears to be the better classifier. 

c, 

Co 

Classifier 1 

7TJ 7T2 

0 0 

5 95 

c, 

Co 

Classifier 2 

71, 7l0 

4 5 

1 90 

Figure 2-9. CM Comparison for Notional Data 

2.5.1 Receiver Operating Characteristic Curves 

The CM (as well as AER) only address the performance of the classifiers at the 

optimal decision threshold. Receiver Operating Characteristic (ROC) curves plot PFA 

against PD for different decision thresholds [1]. Figure 2-10 illustrates the general 

construction of the curve. The decision threshold is set at a given number of intervals 

across the range of the classifiers output. As the threshold changes from left to right (in 

this figure), both the PFA and PD increase as fewer exemplars are classified as Class 1. 
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Figure 2-10. ROC Curve and Decision Thresholds 

There are several metrics that can be used to evaluate ROC curves [1]. The first 

is by visual inspection. If two (or more) ROC curves are overlaid and one curve is 

always higher (a larger PD for all PFA), this classifier performs better. This will work in 

distinguishing classifiers, provided there is no overlap. In the latter, more common 

circumstances, objective metrics are necessary. 

Alsing [1] presents a metric that can be used to objectively compare overlapping 

ROC curves, namely mean distance metric. ROC curves are compared to the chance line, 

which passes from the origin to (1,1). This line represents the ROC curve for random 
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classification. On this curve, the PD = PFA for all decision thresholds, and corresponds to 

the value #used to generate the point on the ROC Curve. The metric is the average 

distance of the ROC curve against this line for all points used to generate the ROC curve. 

In practice, this metric is 

MD = ^  (2.37) 
n 

where PD(6I) and PFA(6I) are the ordered pair of the ROC curve based on the ih decision 

threshold dt. The classifier with the largest mean distance metric is considered to 

perform best for the specific problem. 

2.5.2 Multinomial Selection Procedures 

Alsing [1] developed another comparison procedure, a Multinomial Selection 

Technique. This technique compares posterior probabilities for each point in the 

validation set. The posterior probabilities for quadratic discriminant analysis applied to 

a two class problem are [3] 

dQ. 
PPt= 2 . (2.38) 

For FFNN that are trained to zero and one, the class one posterior probability for a given 

exemplar is simply the network output. The class two posterior probabilities for the 

same exemplar are one minus the output [3]. The posterior probabilities for a RBNN are 

more problematic. Unlike FFNN using a sigmoid in the output layer, the outputs for 

RBNN are not restricted to the interval (0,1). The outputs therefore are normalized to the 

interval [0,1], and these normalized outputs become the posterior probabilities. 

Once the posterior probabilities have been calculated, the multinomial statistic 

can be calculated. For each exemplar in the validation set, a "win" is given to the 
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classifier with the highest posterior probability for the class to which the exemplar 

belongs. When the entire validation set has been processed, the multinomial statistic for 

each classifier becomes the number of "wins" divided by the total number of validation 

points. These statistics are estimates of the true multinomial probabilities, and 

confidence intervals can be created around each value. If the confidence intervals for 

two different classifiers do not overlap, the classifier with the larger multinomial statistic 

can be determined to be a better classifier for the problem. According to Alsing [1], this 

can be used if the other metrics described above fail to determine the best classifier. 

In this chapter, three different classifiers were explored: DA, FFNN, and RBNN. 

Feature selection techniques were described for DA and FFNN. Additionally, means to 

evaluate the performance of these classifiers were discussed: AER, ROC metrics and the 

multinomial selection procedure. In the next chapter, a feature selection technique will 

be developed for RBNN in addition to a new clustering routine. 
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3 Radial Basis Neural Network Techniques 

3.1 Overview 

This chapter introduces two new techniques, derivative based saliency (DBS) and 

signal-to-noise ratio (SNRRBNN) clustering. The first section of this chapter details DBS 

as a feature selection technique for Radial Basis Neural Networks (RBNN's). DBS will 

be compared in Experiment 3-1 with the feature selection techniques used with 

Discriminant Analysis (DA) and Feed Forward Neural Networks (FFNN), discriminant 

loadings and Signal-to-Noise Ratio (SNR) respectively. The second section describes the 

SNRRBNN clustering algorithm. SNRRBNN will be compared with K-Means and the Radial 

Basis Function Iterative Construction Algorithm (RICA) in Experiment 3-2. The final 

section develops the iterative architecture and feature selection algorithm. This algorithm 

will be compared to discriminant loadings and SNR in Experiment 3-3, a repeat of 

Experiment 3-1 with the integrated algorithm replacing iT-Means. 

3.2 Derivative Based Saliency 

A derivative based saliency measure appears to be the only feature selection 

available for RBNN's. Weight-based saliency measures are inappropriate because the 

weights are not applied directly to the features as in FFNN. As with FFNN, it is 

necessary that the data be standardized so that a unit change in each feature is equivalent. 

Otherwise, it is likely the feature with the highest variance will have the highest measure. 

The network output for a given exemplar i is 

p 

XWyeXP 
-1 vLo   ,.U)\2 

2(7j    k=\ 
tw,]-^r (3.1) 
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where p is the number of centers, m is the number of features and /4   is the k 

component of the fh center. The partial derivative of the network output of exemplar i 

with respect to feature k is 

3z(/)      P -w. , , 

DSik=^ = YP^W"-^% (3-2) 
dxk       — cTj 

where 

hy = exp -1   (JO    JJ)Y(J')    ..0) 

2<V 
(.W-/WV (3.3) 

When taking the mean saliency across all the exemplars, the average of DSik can 

be misleading. Different exemplars, particularly in different classes, can have opposite 

signs, moving the measure two zero. The measure of interest is the magnitude of the 

measure across the exemplars. Therefore, the mean absolute saliency measure for the kth 

feature is 

MSk=-f}DSik\ (3.4) 

where n is the number of exemplars in the training set. Figure 3-1 illustrates the 

algorithm in flow-chart format. The complete derivation is provided in the Appendix. 

Examination of Equations (3.2) and (3.3) seem to indicate that prior clustering of 

centers will improve the performance of the measure. If no clustering is performed, the n 

exemplars act as centers. Equation (3.2) will evaluate to zero (or approach it) for most of 

the exemplar center pairs. For /' =j, Xk'l) - ßkJ) = 0, and for those exemplars far from 

centers, hy will approach zero. If exemplars are represented by a center close to them, 

such as the mean, neither part of the equation will approach zero. 
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3.2.1 Experiment 3-1: Simple Feature Selection Test 

This supposed difference must be verified, and this technique for feature selection 

needs to be compared against discriminant loadings and SNR. A simple problem will be 

used to provide preliminary answers, and also explore the effect noise has on 

classification problems. The training and validation sets for this problem are randomly 

generated according to the following distributions. Feature 1 is normally distributed with 

a standard deviation of one, and a mean of one for class one and a mean of negative one 

for class two. This is the only true feature in the problem, but there is considerable 

overlap between the two populations. The remaining nine features are noise features, 

with all data distributed uniformly between negative one and one. Each training set 

consists of eleven exemplars, and each validation set of fifty exemplars from each class. 

Feature selection is performed against the training set, and the error rate is computed on 

the validation set. Four classifiers (and feature selection techniques) were evaluated 

against this problem: DA with discriminant loadings, FFNN with SNR, RBNN with no 

clustering and DBS and RBNN with iT-means clustering and DBS. Fifty random samples 

of both training and validation sets were made, and the average performance is reported. 

Figure 3-2 illustrates the relationship between classification accuracy and the 

number of noise features. The first conclusion that can be made is noise adversely 

impacts classification accuracy for all the competing classifiers, and this difference is 

statistically significant for an overall a = 0.1. This is most true of DA, which performs 

considerably worse than the artificial neural networks with all the noise variables 

included, but which performs best with only one feature remaining. Table 3-1 and Figure 

3-3 explain a large part of why this is true. DA and Discriminant Loadings did not make 

a single mistake in retaining Feature 1 until the end. Table 3-1 includes confidence 

interval half-widths with an overall a = 0.1 using the Bonferroni approach. Clustering 

improves the performance of DBS applied to the RBNN's, validating the premise of the 
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feature selection technique. However, even with iT-Means clustering, DBS falls well 

short of the performance of FFNN with SNR. This leads to poor classification accuracy 

when more features are removed. This can be seen in Figure 3-2. The classification 

accuracies for both FFNN and the RBNN with iT-Means clustering are approximately 

equal with four features remaining. After this point, the FFNN continues to improve, 

while the RBNN begins to plateau, and then dramatically worsens for one feature 

remaining. This gradually worsening performance is caused by the RBNN removing the 

good feature too early and too often. 

Perform Clustering 

Train Network 

Calculate AER 

No 

Calculate Mean 
Saliencies 

Remove Feature 
with min Saliency 

Yes Output Previous 
Network 

Figure 3-1. DBS Iterative Feature Selection Algorithm 
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Table 3-1. Results of Feature Selection Test 

Measures DA FFNN 
RBNN w/o 

clust 
RBNN w/ K- 

Means 
Average Ranking, 

Feature 1 
1 1.04 1.74 1.4 

Proportion Feature 1. 
Ranked First 

1 0.96 0.44 0.76 

90% CI Half-Width 0.0582 0.0621 0.1573 0.1354 

0.9 - 

Li 8 
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DA 
FFNN 
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Number of Features Retained 
9        10 

Figure 3-2. AER for Experiment 3-1 
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Figure 3-3. Average Feature Rankings Experiment 3-1 

3.3 SNR Clustering Technique 

The next topic of discussion involves using the RBNN itself to perform clustering 

for RBNN. This SNR approach follows the same basic approach used in SNR for feature 

selection in FFNN. The first requirement is a noise variable. For feature selection this 

involves a noise feature. In clustering, this will require a noise center added to the 

RBNN. Before defining what a noise center is, the signal-to-noise ratio measure will be 

defined. As with the SNR used for feature selection, the weights of features will be 

compared to the weights of the noise variable. In the clustering instance, the noise is 

defined as 

Noise = (wp+1 )
2 

W (3-5) 

where p is the number of centers in the original problem. The SNR measure for each 

center under consideration is 
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The superscript RBNN is used to distinguish this from the SNR used for feature selection 

in FFNN. Any center with a signal-to-noise ratio less than zero is considered to be noise 

and unnecessary. 

The SNR measure is very straightforward, but what is not obvious is the meaning 

of noise as it applies to a center. When data are standardized to mean zero and unit 

variance, most of the data will be massed in the region between one and negative one in 

each feature. In this thesis, the noise center will be defined as a random vector from this 

region. The center will be distributed uniformly between negative one and one for each 

feature. If a random center made with no knowledge of the problem has a greater impact 

on the output (i.e., has a larger weight) than other centers, they can be considered as 

noise. 

The SNR clustering algorithm proceed as follows. The RBNN is first trained 

using each exemplar as a center with a noise center added. When the training is 

complete, the SNR measures are calculated for each center. Those centers with negative 

ratios are clustered with the nearest within-class center with a positive SNR. The centers 

for the final network become the cluster means and the network is trained using these 

centers. Figure 3-4 further illustrates the algorithm. 

3.3.1 Experiment 3-2: Block-C Clustering Test 

This clustering technique will be compared with iT-Means and RICA in the 

following example. The data sets will be generated from the Block-C distribution shown 

in Figure 1-1. Each training set will contain 60 randomly generated data, while each 

validation set will be made of 100. All three clustering algorithms will be applied to the 

training data. Receiver Operating Characteristic (ROC) curves and estimates of the AER 
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will be generated from the validation set. Thirty replications of this procedure will be 

performed (with a different random center generated for each iteration), and the averages 

across the replications reported. 

Select Centers - 
Class 1 and Class 2 Centers 

ir 

Generate Noise Center ~ 
Uni(-1,1) in all Features 

" 

Train Network with Original 
Centers + Noise Center 

" 

Calculate SNRs for 
each Center 

' ' 
Cluster Original Centers 
with Nearest w/in Class 

Center w/ SNR > 0 

1 ' 

Calculate Cluster Means 

1 ' 

Train Network with 
Cluster Means as Centers 

,RBNN Figure 3-4. SNRKB1™ Clustering Algorithm 

Figure 3-5 displays the average ROC curves for the three clustering algorithms. 

iT-Means clearly dominates the other two clustering techniques for this problem. The 

same experiment was run with 120 data points in each training set to examine the 
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performances with more data for training. Figure 3-6 demonstrates that SNRRBNN 

performs almost identically to iT-Means. The AER for K-Means is slightly better than for 

SNRRBNN (o.i 117 compared to 0.1173), but is not statistically significant. RICA 

improves but is still dominated by the other two techniques. 

While SNRRBNN performs as well as iT-Means with 120 data points in the training 

set, this problem illustrates the shortcomings of this clustering technique as it was applied 

to this problem. To perform the clustering, training was accomplished first with all the 

exemplars as centers and then an additional network was trained with the reduced 

centers. This can quickly increase the number of calculations required, particularly as the 

sample sizes increase. If the network is trained with no clustering, why cluster and train 

the network again? The next section will discuss how SNRRBNN can be applied in an 

iterative manner. 

3.4 An Integrated Architecture and Feature Selection Algorithm 

As discussed in Section 3.3, applying SNRRBNNto a problem where clustering will 

be done only once entails redundant labor. While it will produce a more parsimonious 

model, iT-Means will accomplish this with less computational effort. If however, 

clustering must be done repeatedly to support feature selection, it might prove useful. 

One of the reasons iT-Means performs erratically with DBS is that different centers are 

generated for each iteration. This section will propose an iterative feature selection 

algorithm, and test it against the same problem analyzed in Experiment 3-1. Steppe et. 

al. [16] provide the basis for an alternating architecture and feature selection approach for 

FFNN. The removal of a hidden node was performed followed by a removal of a feature. 

This process was repeated until the appropriate number of hidden nodes and features 

were selected. 
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Figure 3-6. Block C Clustering Test - 120 Data Points 

3-10 



This algorithm follows the basic approach of DBS. The first iteration begins with 

SNRRBNN clustering performed with the whole training set starting as centers. Feature 

selection is performed, and the least significant feature is removed. The second, and each 

successive, iteration begins with the centers provided by the previous iteration, clustering 

the original centers with the nearest within-class retained center. SNRRBNN is applied to 

the current set of centers (minus the removed feature). For each iteration, the 

computational effort is less, as each step entails training with fewer centers. Figure 3-7 

describes the algorithm in more detail. 

This algorithm can be very flexible, with iT-Means being used to cluster for the 

first iteration if the training set is very large. While it is flexible, it does require 

supervision. If the classification accuracy drops significantly after an iteration, it could 

either indicate a true feature deletion or that necessary centers have been removed. At 

this point, the centers from the previous iteration could be retained, and feature selection 

can proceed without clustering until it is determined that only significant features remain. 

3.4.1 Experiment 3-3: Simple Feature Selection Test Revisited 

Figures 3-5 and 3-6 demonstrate the effectiveness of this clustering algorithm 

applied to the problem described in Section 3.2. The performance of SNRRBNN used 

iteratively with feature selection performs as well as SNR applied to the FFNN and 

Discriminant Loadings used in DA. Table 3-2 illustrates this. The average feature 

rankings are identical, and SNRRBNN made only one more mistake in ranking than SNR. 

3-11 



Select Centers 

Cluster using 
SNRRBNN(Fig.3-4) 

Use DBS, removing 
a feature (Fig. 3-1) 

Yes Discard Current 
Centers - no more 

clustering performed 

Retain Current 
Centers 

Remove features 
according to DBS 

until AER worsens 

Output Network w/ 
retained Centers 

and Features 

,RBNN Figure 3-7. Integrated SNRKBN 7DBS Feature Selection Algorithm 

Table 3-2. Results of Feature Selection Test w/ SNR RBNN 

Measures DA FFNN 
RBNN w/o 

clust 
RBNN w/ 
SNRRBNN 

Average Ranking, 
Feature 1 

1 1.06 1.72 1.06 

Proportion Feature 1. 
Ranked First 

1 0.96 0.62 0.94 

95% CI Half-Width 0.0582 0.0621 0.1539 0.0753 
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This chapter has introduced two new techniques: derivative based saliency feature 

selection, and signal-to-noise ratio clustering. Without clustering, the feature selection 

routine does not perform well, even on the simple problem explored in Section 3.1. 

While the clustering algorithm performs fairly well, approaching the performance of K- 

Means as the sample size increases, it does not perform better. Also, for a single 

iteration, it requires redundant work (classification is performed twice). However, when 

the two techniques are coupled, they provide performance equivalent to Discriminant 

Loadings and SNR. These results are only for a simple problem, and more challenging 

problems will be addressed in the following chapter. 
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4 Evaluation of Competing Classifiers 

4.1 Overview 

This chapter will evaluate Discriminant Analysis (DA), Feed Forward Neural 

Networks (FFNN) and Radial Basis Neural Networks (RBNN) applied to several 

challenging problems. The first problem will be Block-C addressed in Sections 1.1 and 

3.3. The second application will be the University of Wisconsin Breast Cancer data. The 

final application will be the classic Fisher's Iris Problem with noise features added. The 

purpose for these final two experiments is to evaluate the efficacy of the feature selection 

algorithms in addition to classifier performance. The analysis techniques in Section 2.5 

will be used to compare the different classifiers. 

4.2 Experiment 4-1: Block-C Classifier Test 

DA, FFNN and RBNN will be applied to the Block-C problem. For the first 

experiment, 240 training points and 100 validation points will be used. Thirty iterations 

will be performed, with the average Receiver Operating Characteristic (ROC) curves, 

Apparent Error Rate (AER), multinomial test statistics and mean distance metrics being 

generated for each classifier. Figure 4-1 displays the average ROC curves, and Table 4-1 

shows the average metrics for each classifier. RBNN will apply SNRRBNN to perform 

clustering on the centers. The FFNN will use eight hidden nodes, and will use 40% of 

the training data for internal validation. 

The RBNN with SNRRBNN clustering significantly outperforms the other two 

classifiers in classification accuracy. Both Artificial Neural Networks (ANN) perform 

much better than DA (which performs worse than just guessing). This experiment was 

repeated for training set sizes of 480 and 960. DA and FFNN were applied identically, 
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while RBNN used iT-Means with k=100 for each class to cluster the centers for both 

experiments. 

Average ROC Curves 
".t % v "i if " •■■• in». I...mi. 

FFNN 

RBNN w/ SNRRBNN Clust 

o:;     o 4     o 5     o 6     o 7     0 s     0 9      1 
Prob False Alarm 

Figure 4-1. Average ROC Curves for Block-C Problem, 240 Training Points 

Table 4-1. Average Metrics for Block-C Problem, 240 Training Points 

Measures DA FFNN RBNN 
AER 0.643 0.1613 0.086 

90% CI Half-Width 0.0461 0.0622 0.0125 
Mean Distance 0.3437 0.6286 0.5385 

90% CI Half-Width 0.0383 0.084 0.0156 
Multinomial 0.1377 0.615 0.2473 

90% CI Half-Width 0.0193 0.1028 0.0948 
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Figure 4-2. Average ROC Curves for Block-C Problem, 480 Training Points 

Table 4-2. Average Metrics for Block-C Problem, 480 Training Points 

Measures DA FFNN RBNN 
AER 0.689 0.0967 0.046 

90% CI Half-Width 0.0263 0.0152 0.0095 
Mean Distance 0.3629 0.7166 0.6126 

90% CI Half-Width 0.0273 0.0348 0.0168 
Multinomial 0.112 0.6863 0.2017 

90% CI Half-Width 0.0105 0.0422 0.0181 
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Figure 4-3. Average ROC Curves for Block-C Problem, 960 Training Points 

Table 4-3. Average Metrics for Block-C Problem, 960 Training Points 

Measures DA FFNN RBNN 
AER 0.706 0.076 0.027 

90% CI Half-Width 0.0303 0.0179 0.0083 
Mean Distance 0.348 0.7435 0.6247 

90% CI Half-Width 0.0143 0.0424 0.0205 
Multinomial 0.0993 0.686 0.2147 

90% CI Half-Width 0.0119 0.0472 0.0493 
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Figures 4-2 and 4-3 display the respective ROC curves, and Tables 4-2 and 4-3 

show the metric performance. The domination in ROC curves and AER continue for the 

RBNN, although the FFNN appears to be converging. The other metrics however, 

identify the FFNN as the better classifier. For all three sample sizes, the FFNN has a 

higher mean distance metric, although for 240 training points the difference is not 

significant with an overall a =0.1. The FFNN also perform significantly better in the 

multinomial selection metric for all sample sizes. 

4.2.1 Experiment 4-2: Perturbed Block-C Classifier Test 

Alsing [1] asserts that a classifier that performs better for mean metric distance 

will be more robust to perturbations in the data. Under this hypothesis, the FFNN will 

better handle changes in the data than the RBNN. To test this, the three experiments 

conducted in Section 3.2 were repeated with the validation data perturbed. The 

validation data were shifted 0.1 in both dimensions. Figures 4-4, 4-5 and 4-6 show the 

averages ROC curves for the three classifiers applied to the different sample sizes. 

Tables 4-4, 4-5 and 4-6 show the average metrics for the three experiments. 

For the training size of 240 exemplars, the mean distance metric was not 

significantly different for RBNN and FFNN. While not statistically significant, FFNN 

still performed better in this metric. Figure 4-4 and Table 4-4 show that the FFNN 

reacted better to the perturbed data. The difference in AER is no longer significant, and 

the ROC curves now overlap. Although the mean distance is still not significant, the 

multinomial statistic is significant. It is concluded that the FFNN is the best classifier for 

this perturbed problem. 

This performance is repeated for the sample sizes of 480 and 960. Figures 4-5 

and 4-6 show that the ROC curves for the FFNN now dominate the RBNN curves. 

Tables 4-5 and 4-6 show the AER is no less for the FFNN, although it is still statistically 
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insignificant. Both the mean distance metric and the multinomial statistic indicate that 

FFNN performs better than the RBNN. It is concluded that the FFNN is more robust to 

perturbations in the validation data, and is a better classifier for the perturbed problem. 

Average ROC Curves 

RBNN w/ SNRRBNN Clust 

0,4;, us,   o.e. 
Prob False Alarm 

Figure 4-4. Average ROC Curves for Perturbed Block-C, 240 Training Points 

Table 4-4. Average Metrics for Perturbed Block-C, 240 Training Points 

Measures DA FFNN RBNN 
AER 0.672 0.338 0.323 

90% CI Half-Width 0.0268 0.0257 0.0243 
Mean Distance 0.3501 0.3823 0.2284 

90% CI Half-Width 0.0383 0.0506 0.0135 
Multinomial 0.324 0.4877 0.1883 

90% CI Half-Width 0.0226 0.0517 0.0556 
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Figure 4-5. Average ROC Curves for Perturbed Block-C, 480 Training Points 

Table 4-5. Average Metrics for Perturbed Block-C, 480 Training Points 

Measures DA FFNN RBNN 
AER 0.6903 0.33 0.3367 

90% CI Half-Width 0.0300 0.0187 0.0174 
Mean Distance 0.428 0.4121 0.2823 

90% CI Half-Width 0.0435 0.0343 0.0217 
Multinomial 0.3603 0.5157 0.124 

90% CI Half-Width 0.0157 0.0313 0.0309 
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Figure 4-6. Average ROC Curves for Perturbed Block-C, 960 Training Points 

Table 4-6. Average Metrics for Perturbed Block-C, 960 Training Points 

Measures DA FFNN RBNN 
AER 0.6957 0.3443 0.353 

90% CI Half-Width 0.0214 0.0205 0.0214 
Mean Distance 0.4313 0.4252 0.2674 

90% CI Half-Width 0.0215 0.029 0.0318 
Multinomial 0.376 0.5027 0.1213 

90% CI Half-Width 0.0236 0.0281 0.0220 

4-8 



4.3 University of Wisconsin Breast Cancer Data 

The University of Wisconsin Breast Cancer Data (UWBCD) set obtained from the 

University of California-Irvine [18] consists of 699 tissue samples. 241 exemplars were 

malignant (Class 1) and 458 were benign (Class 2). Each exemplar contained nine 

features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal 

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nuclei, and 

mitoses. Alsing [1] produced feature rankings by applying SNR to the data. Bare nuclei 

and cell thickness were the most significant, and mitoses and single epithelial cell size 

were the least significant. 

4.3.1 Experiment 4-3: UWBCD Classifier Comparison 

For this experiment, the three classification techniques were applied to the data 

set to include all nine features. The training set consisted of 350 exemplars, with 349 

exemplars held out for the validation set. The FFNN used 18 hidden nodes and 

partitioned the training set into 210 training and 140 training test exemplars. The RBNN 

used SNRRBNN to cluster the data which reduced the number of centers from 350 to 240. 

Figure 4-7 displays the ROC Curves for the three classifiers and Table 4-7 shows 

the metrics for this experiment. Analysis of the ROC Curve and the AER yields no 

significant difference between the classifiers. There is no significant difference between 

the FFNN and DA for the multinomial selection metric, but both perform significantly 

better than the RBNN. The FFNN does perform significantly better than both the RBNN 

and DA for the mean distance metric and should be more robust to perturbations. 
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Figure 4-7. ROC Curves, UWBCD, 9 Features 

Table 4-7. Metrics, UWBCD, 9 Features 

Measures DA FFNN RBNN 
AER 0.0372 0.043 0.0372 

90% CI Half-Width 0.0243 0.0260 0.0243 
Mean Distance 0.6334 0.9129 0.6659 

90% CI Half-Width 0.0361 0.0164 0.043 
Multinomial 0.5043 0.4585 0.0372 

90% CI Half-Width 0.0641 0.0639 0.0243 
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4.3.2 Experiment 4-4: Perturbed UWBCD Classifier Comparison 

This next experiment tests the hypothesis that the FFNN will be more robust by 

perturbing the validation data set. The perturbation was accomplished by adding random 

draws from a normal population with mean zero and standard deviation of two to bare 

nuclei and clump thickness for each exemplar in the validation set. The partitioning of 

the data and the application of the classifiers was identical to Experiment 4-3. Figure 4-8 

illustrates the ROC Curves and Table 4-8 displays the metric performance for the three 

classifiers against this perturbed data. The FFNN clearly dominates the RBNN and DA 

in all categories. The FFNN was decidedly more robust to the changes in the validation 

set. 

4.3.3 Experiment 4-5: UWBCD Feature Selection Test 

For this last experiment, seven features were added to the data set. Five features 

were noise variables uniformly distributed between zero and one. The remaining two 

additional features were redundant features, being slight modifications of two existing 

features, bare nuclei, a significant feature, and mitoses, a relatively insignificant feature. 

These features were slightly perturbed to allow for DA to work. If the features were 

identical, the inverse of the covariance matrix would not exist, and DA could not be 

applied. These feature were modified by adding random draws from a Normal(0,0.04) 

population to each exemplar's features. 

The three feature selection techniques, Discriminant Loadings, signal-to-noise 

ratio (SNR) and derivative-based saliency coupled with SNRRBNN clustering were applied 

to the data. Classification was performed as each feature was removed. Figure 4-9 

shows the AER plotted against the number of features remaining. The minimum AER 

was chosen as the ideal termination point for each classifier, and the resultant ROC 

curves and metric performance are given in Figure 4-10 and Table 4-9. 
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Figure 4-8. ROC Curves, Perturbed UWBCD, 9 Features 

Table 4-8. Metrics, Perturbed UWBCD 

Measures DA FFNN RBNN 
AER 0.3438 0.0917 0.2292 

90% CI Half-Width 0.0609 0.0370 0.0539 
Mean Distance 0.5504 0.7537 0.4384 

90% CI Half-Width 0.0319 0.0141 0.0306 
Multinomial 0.1318 0.8052 0.063 

90% CI Half-Width 0.0433 0.0508 0.0311 
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DA terminated with four features remaining. All the noise features were 

removed, but six of the real features were also removed. The addition of the new features 

caused DA to perform significantly worse, even at its optimal point. The FFNN fared 

much better, removing all five noise features. Only one original feature was retained, 

mitoses, and its removal did not impact classification accuracy. The RBNN retained 

three noise features and both redundant features at its terminating point often features 

retained. At this point, significant features were removed prior to the removal of the 

noise features. SNRRBNN clustering was performed for the first two iteration before 

further clustering affected classification accuracy. The number of centers was first 

reduced to 224 and finally to 75. 

The FFNN and the RBNN were not significantly impacted by the noise and 

redundant features. The AER with all 16 features included is not significantly worse than 

at their optimal point for both networks. Both networks perform significantly better than 

DA at its optimal point. There are no significant differences between the ROC Curves 

and AER for the FFNN and the RBNN. However, the FFNN performs significantly 

better in the mean distance and multinomial selection metrics. The FFNN performs 

feature selection best, and is also the best classifier for Experiment 4-5. 

Table 4-9. Metrics for UWBCD Feature Selection Test 

Measures DA FFNN RBNN 
Features Retained 4 9 10 

Noise Features Retained 0 0 3 
Redundant Features Retained 1 1 2 

AER 0.1289 0.0487 0.0458 
90% CI Half-Width 0.0429 0.0276 0.0268 

Mean Distance 0.5961 0.7976 0.6042 
90% CI Half-Width 0.0342 0.0306 0.0421 

Multinomial 0.0831 0.8539 0.063 
90% CI Half-Width 0.0354 0.0453 0.0311 
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4.4 Experiment 4-6: Noise-Corrupted Fisher's Iris Feature Selection Test 

Bauer et. al. [4] present a noise-corrupted version of Fisher's classic Iris problem. 

This data consist of 148 exemplars belonging to three classes, with 50 exemplars in Class 

1 and 49 each in Class 2 and Class 3. Each exemplar has eight features with the first four 

features being the original features of sepal length, sepal width, petal length and petal 

width. The final four features are noise features generated as random permutations of the 

four real features. Bauer et. al. determined that petal width and petal length are the only 

features required for optimal classification accuracy. The feature selection techniques 

will be evaluated against these criteria. 

4.4.1 Classification for the Three Class Problem 

Prior to conducting the experiment, the classification techniques discussed 

previously must be discussed as they apply to this problem. All of the techniques 

discussed in Chapter 2 and Chapter 3 are predicated on classification for a two-class 

problem. Before applying these techniques to a problem with three (or more) classes, 

some adaptations are required. Only minor changes are required to the actual 

classifications for the Artificial Neural Networks (ANN) and no changes are necessary to 

generate the quadratic discriminant scores. The ANN's require three output nodes, 

instead of the one necessary for the two-class problem. Instead of training the network to 

one for Class 1 and zero for Class 2, the network changes to the vectors [1,0,0] for 

exemplars in Class 1, [0,1,0] for Class 2 and [0,0,1] for Class 3. An exemplar is 

classified in the class corresponding to the node with the largest output. 

Most of the differences between the two-class and three-class problems involve 

feature selection. For DBS, there are now three measures for each exemplar, one for 

each output differing only in the weight that is applied to the different nodes. The 

measure now becomes the average of the absolute value of the individual measures 
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where DS(l)ik is the saliency measure describe in Equation (3.2) applied to the Ith 

exemplar. Discriminant Loadings require more of an adjustment. Equation (2.11) uses 

the b defined in Equation (2.6) to generate the loadings. This definition of b is only valid 

for two-class problems. Laine [11] recommends estimating b for each class 

b, = 2T>;. (4.2) 

where Z is the sample covariance matrix for the whole population and //, the sample mean 

for the ih class. These bj are substituted directly for b in Equation (2.11). The loading 

for the kth feature becomes the maximum (in absolute value) of the class loadings. 

Some of the evaluation methods described in Section 2-5 also need to be adjusted 

and some of the methods cannot be applied to the three-class problem. Confusion 

Matrices (CM) and AER are generated in the same manner as for the two-class problem, 

except that there are nine distinct outcomes rather than four. This difference in 

composition of the CM prevents the construction of a true ROC Curve, and consequently 

the mean distance metric is unavailable. The multinomial selection procedure is 

available however, with only minor changes. The posterior probabilities for DA are 

calculated by applying Equation (2.38), except that the denominator is now the sum of 

the three quadratic discriminant scores. The posterior probabilities for the ANN's are 

even simpler than those described in Section 2-5-3. The posterior probabilities for each 

class are the outputs (in the case of RBNN's, these outputs are standardized to the 

interval [0,1]) for the corresponding node of the trained networks. The evaluation of this 

three-class problem will entail comparison of the feature selection techniques in 

parsimony and the general classification will be evaluated using AER and the 

multinomial selection criteria. 
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4.4.2 Results for the Noise-Corrupted Iris Problem Feature Selection Test 

The Fisher's Iris data were divided into 75 exemplars for training and 73 for 

validation. Fifteen of the training exemplars were allotted for internal validation for the 

FFNN. Additionally, the FFNN used twelve hidden nodes. The RBNN began with 75 

centers which were reduced to three after the first five iterations. The results of this 

experiment are given in Figure 4-11 and Table 4-10. The optimal stopping point for the 

RBNN and FFNN was with two features remaining, petal width and petal length, with 

petal width being the most salient feature. The optimal feature set for DA included these 

two features plus sepal length. All three feature selection techniques produced similar 

feature sets and identical estimates of the AER. The optimal FFNN however, 

significantly outperformed DA and the RBNN in the multinomial selection criteria. This 

result is consistent with the previous experiments. 

Table 4-10. Metrics for Optimal Classifiers, Experiment 4-6 

Measures DA FFNN RBNN 
Features Retained 3 2 2 

Noise Features Retained 0 0 0 
AER 0.0137 0.0137 0.0137 

90% CI Half-Width 0.0326 0.0326 0.0326 
Multinomial 0.0000 0.9863 0.0137 

90% CI Half-Width 0.0543 0.0326 0.0326 
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Figure 4-11. AER vs. Number of Features Retained, Experiment 4-6 

In this chapter three primary problems were explored: Block-C, the University of 

Wisconsin Breast Cancer Data set and Fisher's Iris problem. For all problems RBNN's 

perform at least as well as FFNN's in AER and in the ROC Curves. However, the 

FFNN's performed consistently better in the mean distance and multinomial selection 

metrics. For this reason, the FFNN's performed significantly better than the RBNN's 

when applied to the perturbed data sets. For the two feature selection tests, Experiment 

4-5 and Experiment 4-6, the integrated architecture and feature selection algorithm for 

the RBNN performed as well as Discriminant Loadings and SNR. 
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5 Summary and Recommendations 

5.1 Overview 

This chapter will summarize the existing techniques presented, as well as the 

newly developed algorithms, for solving an integrated architecture design and feature 

selection problem for radial basis neural networks. Additionally, this chapter will 

highlight the major contributions of the thesis and give recommendations for significant 

areas of future research. 

5.2 Summary of Techniques 

This thesis presented several feature selection techniques including Discriminant 

Loadings applied to Discriminant Analysis (DA) and signal-to-noise ratio (SNR) applied 

to Feed Forward Neural Networks (FFNN). Clustering techniques for Radial Basis 

Neural Networks (RBNN) were also discussed. The two techniques applied to the 

experiments were iT-Means and Radial Basis Function Iterative Construction Algorithm 

(RICA). Chapter 3 developed three additional techniques for RBNN's. The first 

technique was feature selection using derivative-based saliency (DBS). The second 

technique was a new clustering algorithm, SNRRBNN used for architecture selection in 

RBNN's. These techniques were combined to form the integrated architecture and 

feature selection algorithm which alternates between clustering and feature selection until 

the appropriate centers and features are retained. Table 5-1 details the techniques and 

Table 5-2 illustrates to which experiments they were applied. 

Four analysis techniques were also discussed in this thesis: Actual Error Rate 

(AER), visual inspection of the Receiver Operating Characteristic (ROC) Curves, the 

mean distance metric, and the multinomial selection procedure. These techniques were 

applied to the experiments to evaluate the competing classifiers. 
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Table 5-1. Description of Classification Techniques 

Technique Classifier Application Description 

DL DA 
Feature 

Selection 
Discriminant Loadings - Measures the correlation 

between the output and features 

SNR FFNN 
Feature 

Selection 
Signal-to-Noise Ratio - A weight-based saliency measure 

contrasting features to a noise feature 

DBS RBNN Feature 
Selection 

Derivative-Based Saliency - Measures the unit change in 
the output with respect to the feature 

SNRRBNN RBNN Architecture 
Selection 

Signal-to-Noise Ratio Clustering- A weight-based 
clustering algorithm contrasting centers to a noise center 

Z-Means RBNN 
Architecture 

Selection 
K-Means Clustering Algorithm - A clustering algorithm 

using Euclidean distance 

RICA RBNN 
Architecture 

Selection 
Radial Basis Function Iterative Construction Algorithm - 

A clustering algorithm using Mahalanobis distance 

Table 5-2. Summary of Experiments and Techniques. 

Experiment Data Set Purpose 

Techniques 
DA FFNN RBNN 

DL SNR Z-Means RICA SNRRBNN DBS 

SNRRBNN 

+ DBS 
Experiment 

3-1 
Simple 
Noise 

Feature 
Selection 

X X X X 

Experiment 
3-2 Block-C Clustering X X X 

Experiment 
3-3 

Simple 
Noise 

Feature 
Selection 

X X X 

Experiment 
4-1 Block-C 

Classifier 
Comparison 

X X 

Experiment 
4-2 

Perturbed 
Block-C 

Classifier 
Robustness 

X X 

Experiment 
4-3 

UWBCD 
Classifier 

Comparison 
X 

Experiment 
4-4 

Perturbed 
UWBCD 

Classifier 
Robustness 

X 

Experiment 
4-5 

Noisy UW 
BCD 

Feature 
Selection 

X X X 

Experiment 
4-6 

Noisy 
Iris 

Feature 
Selection 

X X X 
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5.3 Summary of Contributions 

The major contribution of this thesis is an integrated architecture and feature 

selection algorithm for RBNN's. The performance of this algorithm was comparable to 

Discriminant Loadings for DA and SNR for FFNN's. It also significantly reduced the 

number of centers required for optimal classification. Incorporating SNRRBNN for 

architecture selection and DBS for feature selection provides a viable feature selection 

routine for RBNN's which is not currently in existence. Additionally, a new clustering 

algorithm was developed that uses the network to determine the necessary architecture. 

The new integrated algorithm is suitable for any classification problem. Examples of 

potential application areas include the classification of failure modes from sensor data on 

various aircraft components, classifying individuals as pass or fail for pilot training, and 

discriminating targets from clutter for target recognition systems. 

5.4 Conclusions 

There are several general conclusions that can be drawn from this research. This 

thesis highlights the need for feature selection, and illustrates why the development of 

feature selection for RBNN's is important. Experiment 3-3 illustrated the effect of noise 

on classification accuracy. For all classifiers considered, the AER is significantly worse 

for the data with a large number of noise features versus the data with only the true 

feature. This effect is more pronounced in the absence of strong features. Experiment 3- 

3 has significant overlap between the two classes with a minimum error rate of 

approximately 16%. Experiment 4-5 has less inherent error, and Experiment 4-6 has 

features which will almost perfectly discriminate between the three populations. For 

these latter two experiments the noise does not negatively impact classification accuracy 

for the Artificial Neural Networks. The AER for DA is significantly worse for the noise 

corrupted data in Experiment 4-5, but not nearly as much as in Experiment 3-3. For 
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Experiment 4-6, the effect of noise on the AER is eliminated. These experiments 

illustrate the need of feature selection in the absence of strong features, particularly for 

DA. 

This research also highlights the variable performance of the classifiers across the 

different experiments. FFNN's and RBNN's are consistently the top performers for all 

the applications. DA, while performing as well as the ANN's in Experiments 4-3 and 4- 

6, performed significantly worse than the ANN's in all measures for the other 

experiments. The performance of FFNN's and RBNN's are similar with two important 

distinctions: 1) RBNN's outperform FFNN's in AER for the geometric Block-C problem 

of Experiment 4-1,2) the ROC Curves for the RBNN's dominate the FFNN across the 

training set sizes. For this problem, the RBNN outperforms the FFNN. 

While the RBNN's perform better than the FFNN in AER in Experiment 4-1 and 

comparably for the other experiments, FFNN's consistently perform better in the mean 

distance and multinomial selection metrics. The FFNN provides more confidence in the 

classification results than DA and RBNN's for all the applications in this thesis. The 

impact of the performance in the mean distance metric is illustrated in Experiments 4-2 

and 4-4 where the validation set is perturbed. In both instances, the FFNN's outperform 

the other two classifiers. Of particular interest is Experiment 4-2 in which the FFNN's 

outperform the RBNN's for the perturbed data set, while the RBNN's outperform the 

FFNN's for the standard data. These results indicate a fundamental difference in the 

problems best suited for the ANN's. RBNN's are better suited for applications where the 

validation set is distributed identically to the training set and no deviations are expected 

for new data. FFNN's are more resistant to these deviations and are better suited to 

applications where the new exemplars might change in time. This is particularly true of 

problems involving human data that are to be applied in the long run. 
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5.5 Recommendations for Future Research 

The results of this research identify many fruitful areas of future research. Since 

most of the work performed in this thesis was experimental in nature, it would be 

instructive to test the algorithm on problems other than the four discussed herein. 

Through additional experimentation, it may be possible to gain further insight into the 

performance of the integrated algorithm as compared to existing techniques. 

Second, it may be possible to improve upon the procedure for selecting the 

number and location of the centers. In particular, this may be accomplished by training 

the centers as in [12]. Implementing this approach, in conjunction with derivative-based 

saliency, should be more computationally efficient. 

Finally, the empirical results provide some insight into theoretical relationships 

between the signal-to-noise ratio clustering algorithm and the K-means clustering 

approach. It would be instructive to explore this relationship analytically to determine if, 

in fact, the ROC curves for the two approaches converge or if this is simply an artifact of 

the data sets considered. 

5-5 



Appendix A. Derivation of Derivative-Based Saliency for RBNN's 

■th The network output, z, of the i   exemplar is 

zw =^wy. exp 
7=1 

■1 

IW-MW (/) - z/ Uj 

2CTy    A=I 

(A.l) 

■th 0) where Wj is the weight of they   center, p is the number of nodes, /4   is the &   component 

■th of they   center and m is the number of features. This can also be written as 

,(')_ = ZwyTlexP 
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Therefore, Equation (App.3) becomes the result seen in Equation (3.2) 
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Appendix B. Derivation of Derivative-Based Saliency for GRNN's 

The DBS measures for GRNN's are obtained in a similar fashion to RBNN's. 

■th The network output for the i   exemplar is 

ZW7eXP 
7=1 2aj   k=\ 

,ik'"-^Ar 
-i 
TI^-M^ 

(B.l) 

Zexp 
7=1 ^t> j      k=\ 

This is the sum of the weighted hidden outputs, z(i) scaled by the unweighted hidden 

outputs, s(i). The partial derivatives of this expression with respect to the Ith feature is 

obtained by using the quotient rule, and is given by 

DS„ = 
a (') *<' 

dx, 
z i) -z< 

dxl 

dxl s I)2 

(B.2) 

The partial derivative of z(i) is given in Equation (A.7), with the partial derivative of s(i) 

differing only in the absence of the weights. Therefore, the saliency measure is 

DSa = ■ 7=1  O] 7=1    Oj 
(B.3) 

where 

hy = exp 
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